产品分类
-
实验室仪器
按功能分按专业实验室分
- 化学合成
- 乳品类检测专用仪器
- 细胞工程类
- 种子检测专用仪器
- 病理设备
- 1. 乳品类检测专用仪器
- 1. 种子检测专用仪器
- 层析设备
- 动物实验设备
- 粮油检测
- 生物类基础仪器
- 植物土壤检测
- 1. 电泳(电源)仪、电泳槽
- 2. 分子杂交
- 3. 基因工程
- 4. PCR仪
- 5. 紫外仪、凝胶成像系统
- 药物检测分析
- 地质
- 纺织
- 分析仪器
- 农产品质量监测
- 1. 农药残毒快速检测仪
- 2. 农产品检测试纸
- 3. 农产品检测试药片
- 4. 土壤、化肥快速检测仪
- 5. 种子外观品质分析仪
- 水产品质量安全
- 水产技术推广
- 水生动物防疫
- 食品检测实验室
- 疾病预防控制中心
- 1. 快速检测试剂盒
- 2. 肉类检测仪器
- 3. 食品安全快速分析仪
- 4. 食品安全检测箱
- 5. 食品检测仪器配套设备
- 6. 食品安全检测仪器
- 7. 三十合一食品安全检测仪
- 8. 相关配置、配件
- 供水、水文监测
-
暂无数据,详情请致电:18819137158 谢谢!
-
暂无数据,详情请致电:18819137158 谢谢!
-
暂无数据,详情请致电:18819137158 谢谢!
-
暂无数据,详情请致电:18819137158 谢谢!
-
暂无数据,详情请致电:18819137158 谢谢!
-
暂无数据,详情请致电:18819137158 谢谢!
热销品牌 - 工业仪器
- 户外仪器
- 环境监测
- 便携式仪器
- 在线式仪器
UPLC(超高效液相色谱)技术
[2012/10/31]
在1996年,Waters公司推出AllianceHPLC时的主要目标是提高液相色谱的“精度”。当时多数公司都认为HPLC技术已经发展到极致了、而同时用户对性能没有更高的需求,因此HPLC的目标应该是降低成本、走向更低的价格以获得更广泛的应用。针对这样的观念,Waters公司提出:HPLC的技术没有到达极限,用户对HPLC有更高的要求,HPLC精度的提高对更好、更可靠的结果有极大的益处,对法规的遵从也是一个极大的促进。
站在当今世界科技前沿的液相色谱用户现在又有了新的需求。首先是改进生产力的需求,因为大量的样品需要在很短的时间内完成,例如代谢组学分析;其次是在生化样品及天然产物样品的分析中,样品的复杂性对分离能力提出了更高的要求;第三是在与MS及MS/MS等检测技术联用时,对连接的质量提出了更高的要求。简而言之,我们需要“更快地得到更好的结果”。
今天我们发现,随着科学技术的进步,对液相色谱技术的要求也不断提高,单从技术角度的改进已经不行。这就需要同时从科学与技术的角度出发,或者说从理论高度对液相色谱重新认识。因此UPLC(超高效液相色谱)概念的提出也就十分自然。简而言
之,UPLC是用HPLC的极限作为自己的起点。
理论基础
早在1956年,J.JvanDeemter就发表了他著名的理论:vanDeemter曲线及其方程式。最早这个理论是用在气相色谱上的,但是后来出现的液相色谱上也能应用这个理论。Waters公司引入UPLC的概念就是由研究这个著名的方程式开始。
首先颗粒度越小柱效越高;其次每个颗粒度尺寸有自己的最佳柱效的流速;最后,更小的颗粒度使最高柱效点向更高流速(线速度)方向移动,而且有更宽的线速度范围。所以降低颗粒度不但提高柱效,同时也提高速度。使用更高的流速会受到色谱柱填料耐压及仪器耐压的限制。反之,如果不用到最佳流速,小颗粒度填料的高柱效就无法体现。另外,更高的柱效需要更小的系统体积(死体积)、更快的检测速度等一系列条件的支持,否则小颗粒度填料的高柱效同样无法充分体现。
因此,要真正创建一个全新的分离科学领域-UPLC,必须解决以下问题:
大幅提高色谱柱的性能;第一要解决小颗粒填料的耐压问题,第二要解决小颗粒填料的装填问题,包括颗粒度的分布以及色谱柱的结构。
高压溶剂输送单元(超过15000psi)。
完善的系统整体性设计,降低整个系统的体积,特别是死体积。并解决超高压下的耐压及渗漏问题。
快速自动进样器,降低进样的交叉污染。
高速检测器;优化流动池以解决高速检测及扩散问题。
系统控制及数据管理,解决高速数据的采集、仪器的控制问题。
新型色谱填料及装填技术
UPLC分离只有在新型的、耐压而且颗粒度分布范围很窄的1.7祄颗粒填料合成出来之后才有可能。色谱柱技术应该涵盖几个方面的内容:首先是填料的合成,以得到高质量的填料颗粒,包括耐高压、耐酸碱等等。其次是颗粒的筛选,选出颗粒度分布尽可能窄的填料。最后是装填技术,以保证即堵住颗粒不使其外流,又不至于引起反压的大幅升高。
Waters公司利用1999年发明的杂化颗粒技术(HybridParticleTechnology-HPT),合成了第二代有机硅填料。它使用双(三乙氧基硅)乙烷在硅胶中形成桥式乙基基团(图2)。这样合成出来的填料在其内部有了更多的“交联”结构,其机械强度有了极为显著的提高,耐压超过了20000psi。使用这项技术,Waters公司合成了低于2祄颗粒度的填料——1.7祄颗粒度的“ACQUITYUPLCTM”填料。为了得到更好的耐压能力及传质作用,还优化了该填料的孔体积及孔径。
传统色谱柱填料的装填技术受两个方面的影响,导致现有小颗粒填料色谱柱的性能及质量均不能令人满意。首先是其颗粒度分布一般较宽,例如,5祄颗粒度填料中会有大量的4祄以下及6祄以上的颗粒,因此,通常使用2祄筛板在色谱柱的出口拦截填料,阻止其外漏。其次,如果使用低于2祄的筛板,筛板的反压升高很快,甚至超过了填料所产生的反压。因此,目前大多数3.5祄、2.5祄或更低颗粒度的填料还是使用2祄的筛板,只是在柱头装填一小段5祄的填料。因此现有小颗粒度填料的色谱柱与理论或理想状态相距甚远。
站在当今世界科技前沿的液相色谱用户现在又有了新的需求。首先是改进生产力的需求,因为大量的样品需要在很短的时间内完成,例如代谢组学分析;其次是在生化样品及天然产物样品的分析中,样品的复杂性对分离能力提出了更高的要求;第三是在与MS及MS/MS等检测技术联用时,对连接的质量提出了更高的要求。简而言之,我们需要“更快地得到更好的结果”。
今天我们发现,随着科学技术的进步,对液相色谱技术的要求也不断提高,单从技术角度的改进已经不行。这就需要同时从科学与技术的角度出发,或者说从理论高度对液相色谱重新认识。因此UPLC(超高效液相色谱)概念的提出也就十分自然。简而言
之,UPLC是用HPLC的极限作为自己的起点。
理论基础
早在1956年,J.JvanDeemter就发表了他著名的理论:vanDeemter曲线及其方程式。最早这个理论是用在气相色谱上的,但是后来出现的液相色谱上也能应用这个理论。Waters公司引入UPLC的概念就是由研究这个著名的方程式开始。
首先颗粒度越小柱效越高;其次每个颗粒度尺寸有自己的最佳柱效的流速;最后,更小的颗粒度使最高柱效点向更高流速(线速度)方向移动,而且有更宽的线速度范围。所以降低颗粒度不但提高柱效,同时也提高速度。使用更高的流速会受到色谱柱填料耐压及仪器耐压的限制。反之,如果不用到最佳流速,小颗粒度填料的高柱效就无法体现。另外,更高的柱效需要更小的系统体积(死体积)、更快的检测速度等一系列条件的支持,否则小颗粒度填料的高柱效同样无法充分体现。
因此,要真正创建一个全新的分离科学领域-UPLC,必须解决以下问题:
大幅提高色谱柱的性能;第一要解决小颗粒填料的耐压问题,第二要解决小颗粒填料的装填问题,包括颗粒度的分布以及色谱柱的结构。
高压溶剂输送单元(超过15000psi)。
完善的系统整体性设计,降低整个系统的体积,特别是死体积。并解决超高压下的耐压及渗漏问题。
快速自动进样器,降低进样的交叉污染。
高速检测器;优化流动池以解决高速检测及扩散问题。
系统控制及数据管理,解决高速数据的采集、仪器的控制问题。
新型色谱填料及装填技术
UPLC分离只有在新型的、耐压而且颗粒度分布范围很窄的1.7祄颗粒填料合成出来之后才有可能。色谱柱技术应该涵盖几个方面的内容:首先是填料的合成,以得到高质量的填料颗粒,包括耐高压、耐酸碱等等。其次是颗粒的筛选,选出颗粒度分布尽可能窄的填料。最后是装填技术,以保证即堵住颗粒不使其外流,又不至于引起反压的大幅升高。
Waters公司利用1999年发明的杂化颗粒技术(HybridParticleTechnology-HPT),合成了第二代有机硅填料。它使用双(三乙氧基硅)乙烷在硅胶中形成桥式乙基基团(图2)。这样合成出来的填料在其内部有了更多的“交联”结构,其机械强度有了极为显著的提高,耐压超过了20000psi。使用这项技术,Waters公司合成了低于2祄颗粒度的填料——1.7祄颗粒度的“ACQUITYUPLCTM”填料。为了得到更好的耐压能力及传质作用,还优化了该填料的孔体积及孔径。
传统色谱柱填料的装填技术受两个方面的影响,导致现有小颗粒填料色谱柱的性能及质量均不能令人满意。首先是其颗粒度分布一般较宽,例如,5祄颗粒度填料中会有大量的4祄以下及6祄以上的颗粒,因此,通常使用2祄筛板在色谱柱的出口拦截填料,阻止其外漏。其次,如果使用低于2祄的筛板,筛板的反压升高很快,甚至超过了填料所产生的反压。因此,目前大多数3.5祄、2.5祄或更低颗粒度的填料还是使用2祄的筛板,只是在柱头装填一小段5祄的填料。因此现有小颗粒度填料的色谱柱与理论或理想状态相距甚远。
上一篇:怎样选购气相色谱仪
下一篇:水质测定方法—国家标准