酶标仪中的荧光检测技术

[2015/8/3]

1.概述室温下,大多数分子处于基态的最低振动能级,处于基态的分子吸收能量(光能、化学能、电能或热能)后跃迁至激发态,激发态不稳定,将很快衰变到基态,以光的形式放出能量,这种现象称为“发光现象”。分子发光包括荧光,磷光,化学发光,生物发光等。受到光照时发光,光照切断时发光立即消失的叫荧光,光照切断时,发光逐渐变弱以致消失的叫磷光,吸收化学反应的化学能量而发光叫化学发光,由生物能转变为光辐射的称作生物发光。
由于发光物质不同荧光有分子荧光和原子荧光之分,分子荧光为带光谱,原子荧光为线光谱,通常所说的荧光为分子荧光。通过测定所发射荧光的特性和强度,可以对物质进行定性、定量分析。
2.荧光检测技术
2.1荧光强度(FI荧光强度与荧光物质的浓度成正比,这是荧光分析法是量分析的依据。在生物学上的应用非常广泛,可以进行生物大分子定量,酶活性分析,荧光免疫分析,细胞学分析(细胞增殖,细胞毒理,细胞吸附等)和分子间相互作用。
2.1.1细胞凋亡检测Caspase家族在介导细胞凋亡的过程中起着非常重要的作用,其中Caspase-3为关键的执行分子,它在凋亡信号传导的许多途径中发挥功能。Caspase-3正常以酶原(32KD)的形式存在于胞浆中,在凋亡的早期阶段,它被激活,活化的Caspase-3由两个大亚基(17KD)和两个小 亚基(12KD)组成,裂解相应的胞浆胞核底物,最终导致细胞凋亡。但在细胞凋亡的晚期和死亡细胞,caspase-3的活性明显下降。
设计出荧光物质偶联的短肽Z-DEVD-AMC。在共价偶联时,AMC不能被激发荧光,短肽被水解后释放出AMC,自由的AMC才能被激发发射荧光。根据释放的AMC荧光强度的大小,可以测定 caspase-3的活性,从而反映Caspase-3被活化的程度。
2.1.2细胞毒性的检测体外细胞毒性研究对于检测新的生物来源或人工合成的细胞毒素以及例行的临床相关的检测都有着重要的意义。细胞膜非渗透性的核染料 Propidium iodide能穿透损伤的细胞膜,荧光密度越高反映出其受损细胞越多。
2.1.3钙流检测Fura-2indo-1Quin-2Ca2+荧光指示剂,可以灵敏地反映细胞内钙离子浓度的变化,当结合钙离子时,最大激发波长会发生改变,发射荧光的强度和结合的Ca2+浓度有着定量的关系。
2.2荧光偏振(FP1926Perrin首先描述了荧光偏振理论,溶液中的荧光分子在受到偏振光照射时,可吸收并释放出相应的偏振荧光,如果在激发时荧光物质处于静止状态,发射光将保持原有激发光的偏振性,如果其处于运动状态,发射光电偏振偏振平面将不同于原有激发光的偏振特性,这就是荧光偏振现象,荧光分子与其它因子的相互作用,例如相互结合或排斥;其所处环境的性质,例如溶液的粘度、温度等,这些因素都有可能对这个荧光因子受激发后发出的发射光的发射平面产生影响。因此以荧光偏振为基础发展的技术可用来研究生命科学中分子之间的相互作用,如受体配体结合分析,DNA-蛋白质结合分析,SNP分析,酶活性分析。
荧光偏振分析所需的样品量少,灵敏度高,可达亚纳摩尔级范围,重复性好,操作简便,也更为安全可靠,不会在实验过程中生成有害的放射性废物,此外荧光偏振是真正均相的,允许实时检测(动力学检测),对于浓度变化不敏感,是均相检测形式(中间不含洗涤步骤)的最佳解决方案。
2.3时间分辨荧光(TRF在做荧光测定的时候,由于背景荧光信号干扰,使用传统的发色团进而进行荧光检测的灵敏度就会严重下降。大部分背景荧光信号是短时存在的,因此使用长衰减寿命的标记物就可以使瞬时荧光干扰减到最小化。
时间分辨荧光是用稀土元素作为标记物,稀土三价离子的电子云的结构会一定程度上限制了电子的迁移,导致这类元素发生的荧光的衰减周期通常是很长的,从而消除背景荧光的干扰 大大提高检测的灵敏度(表2)。应用稀土元素作标记物的另一个好处是激发光与发射光峰值Stoke 位移大。这就可消除激发光和散射光的干扰,同时被激发的荧光光带极窄荧光的发射峰非常尖锐可使仪器调整在极窄的波长范围内测定极大地降低了来自背景的各种干扰。
荧光团        荧光寿命(ns
非特异荧光背景    110
人血清白蛋白     4.1
球蛋白        3.0
细胞色素C      3.5
异硫氰酸荧光素(FITC4.5
丹磺酰氯       14
稀土螯合物      103106
2.4荧光共振能量传递(FRET荧光共振能量传递现象是Perrin20世纪初首先发现的,1948年,Foster创立了理论原理,指荧光能量供体与受体间通过偶极-偶极耦合作用转移能量的过程,这种能量的转移是非放射性的,产生FRET的条件主要有三个:(1)供体与受体间足够靠近(110 nm);(2)供体的发射光谱与受体的激发光谱有一定的重叠;(3)给体与受体的偶极具一定的空间取向,这是偶极-偶极耦合作用的条件。
荧光共振能量传递因为要考虑到供体和受体之间的距离,所以经常用来研究分子间的相互作用,像蛋白质的相互作用,抗原抗体结合,受体与配体的结合,另外在膜反应、离子通道等方面的研究也有相应应用。将FRET荧光探针标记的肽链,加入到固体表面的双层膜中,通过荧光漂白恢复(FRAP)成像技术检测,为研究跨膜螺旋二聚作用提供一个新的方法。用FRET标记细胞质,应用时间分辨技术,检测其对P2X离子通道的门控作用。
利用Eu等长效荧光物质作为供体,来进行荧光共振能量传递,在激发光熄灭后受体仍能较长的能量衰减时间,能量传递效率更高,可检测的相互作用距离更长,可达到100-200nm,时间延迟检测,降低了背景噪音,提高了灵敏度