食品分析现在和未来的挑战

[2014/6/26]

  在这篇文章中,我们不会对大量应用于食品分析的技术进行论述。本文将主要聚焦于以下几个主要的食品分析技术方法:(1)光谱学技术,如质谱、核磁共振、红外、原子光谱、荧光法等;(2)生物技术,如聚合酶链反应(PCR)、免疫技术、生物传感器等;(3)分离技术,如高效液相色谱、气相色谱、毛细管电泳、超临界流体色谱等;(4)样品制备技术,如固相萃取、超临界流体萃取、顶空法、流动注射分析、吹扫补集、加压液体萃取、微波辅助萃取、自动热解析法等;(5)电化学法;(6)联用技术等。如果将上述各类技术的分支技术也考虑在内,那用于食品分析的技术就更多了。

  为了总结食品分析当中大量被使用到的技术以及被解决的课题,表S-1(见附件)作为辅助信息,对2009-2011年间发布的针对不同食品分析的文章、综述、文章章节进行了总结。同时,图1和图2,提供了2001-2011年间发表的关于食品分析的文章统计,其中的数据是通过食品科技文摘 (FSTA)数据库,以各类技术为关键词搜索整理所得。如果我们将图1和图2的数据,与1990-2000年间发布的类似食品分析文章统计数据相比,能够得到许多重要的结论。其中最重要的变化趋势是,生物技术和样品处理技术的应用明显增多,而放射化学和热分析技术的应用严重减少。光谱学技术、生物技术和样品处理技术的应用和20世纪末相比,分别增加了2倍、3倍和4倍,热分析和放射化学技术的应用则减少了一半。其他比较成熟的技术,如色谱技术的应用依然比较多,但如今,它的应用也不如以前(1990-2000年)广泛,因为光谱学技术的应用越来越多,而且成为了目前食品分析中应用最广泛的技术。实际上,对于食品组分进行定性和定量分析,以及进行食品特性的研究,都可以通过测量电磁辐射(可见光、红外光、荧光、拉曼散射光等的吸收)与食品的相互作用来实现。得益于新型光谱仪器技术及多元化学计量学的发展,能够对不同的红外或荧光光谱表现出的细微差别进行评估,例如对食品光谱分析所展现出的细微差别,从而使得开发预测模型成为可能。

  近年来,成像技术如共聚焦激光扫描显微镜,或高光谱成像耦合图像分析技术已被成功地用于研究高度异质性食品。实际上,成像分析技术,例如数学形态学、或图像纹理分析,使得对图像中的结构进行定量分析,或展示不同的加工过程对于食品中蛋白质网络微观结构的影响成为可能。从另一方面来说,食品分析中光谱学技术应用的重要增长也许是由于NMR、红外光谱等技术大量的最新应用,以NMR为例,由于对具有生物和代谢等特性的未知化合物的明确鉴定的需要,使得这类技术的应用数量接近于一些成熟的技术,如荧光、甚至质谱的应用数量。

  生物技术的大量应用并不奇怪,这些技术,以生物体及他们的产品如酶、抗体、DNA等为基础,来实现鉴别和分析食品,它们在食品分析中的应用增长了3 倍。其中PCR技术的应用占据了所有生物技术应用的60%,相当于之前生物技术在食品分析当中的所有应用的2倍。PCR技术的大量应用主要归因于要采取不同的步骤,来克服影响DNA提取质量和数量的主要难题。目前,针对许多样品的新仪器和新标准化协议,使得PCR成为世界范围内一种广泛应用的技术,可以在几乎所有的食品分析实验室中看到它。

  至于分离技术的分布和重要性,液相色谱(LC)和毛细管电泳(CE)的应用增长主要来自于技术本身的发展,如:在确保分辨率和分离效率的同时降低分析时间(UPLC、微流控芯片电泳技术、整体柱),新的分离机理(亲水相互作用色谱等),将质谱作为LC或CE的检测器。另一方面,气相色谱(GC)的应用基本和过去持平,并在一些特定的应用领域展示了它的重要性。最后,联用分离技术,如中心切割多维色谱法(LC−LC, GC−GC, LC−GC, LC−CE等),或全二维技术(LC×LC, GC×GC),它们可提供更多信息来支持破译食物的复杂性,以及研究食品对于人类健康真实影响的理论。

  事实上,多维色谱已经成为一种分析复杂样品的可选择方法,在食品分析中有一种情况,即某类技术的改进,如新的色谱柱技术,似乎已经达到了它们的极限。然而,多维色谱峰容量的增加到目前要比经过各种改进的一维色谱高。多维色谱允许两个或更多个独立或几乎独立的分离步骤结合,显著增强相应的一维色谱技术的分离能力,因而提高分离复杂样品中化合物的能力。尽管两种不同色谱分离技术的耦合并不是什么新技术,但是这一技术的发展拓展了综合应用,在这些应用中,整个样品可以从不同的独立的维度进行分析,并减少了样品制备的步骤。食品分析领域,有关这种综合技术的应用每年都在增长,而且预计将持续保持增长状态。

  对于食品分析当中样品制备技术应用的显著增长(4倍左右),我们需要给予特别的关注。样品制备技术的改进目标在于减少实验室溶剂的使用和有害物质的产生,减少劳动力和时间,降低每个样品制备的成本,同时提高被分析物质的分离效率。目前,新型绿色制样技术,如超临界流体萃取(SFE)、亚临界水萃取 (SWE,也称为加速溶剂萃取)将在食品科学中有更广泛的应用,不仅仅是在食品分析当中,还有在食品功能成分的提取中。这些萃取技术基于压力流体可提供更高的选择性、更短的萃取时间、和对环境更友好的特性。关于这些技术的文章在2001-2011年10年间超过1500篇,而20世纪末时,关于这些技术的文章还只在300篇左右。举一个有趣的例子,例如,加压流体萃取(PLE),在以前还没有这种技术,但现在却是食品分析当中仅次于SFE的十分重要的“绿色”样品制备技术。

  同时, 相较于传统萃取方式,不同的液相微萃取模式,如单液滴微萃取、分散液-液微萃取、中空纤维膜液相微萃取(HF-LPME)等操作更简便、更有效、速度更快,并且有机溶剂的消耗量更低,所以在食品分析当中它们被越来越多地用于从不同的基质中提取有机或无机物质。当比较样品制备和分离技术的数量和分布时,另一个比较重要的观察结果是,在过去10年中,固相萃取(SPE)应用的增长在某种程度上和液相色谱的应用是相关联的,对于液相色谱来说,在过去10年当中,新的分离机理、新应用和新方法已经建立。另外,比较有趣的发现还有,固相微萃取(SPME)的应用和其他发展比较成熟的技术,如顶空法的应用数量比较接近。在过去几年中,SPME的快速增长主要由于其操作简便、纤维和涂层应用范围的日益广泛,以及新发展起来模式,这些模式拓宽了SPME的应用范围。